Abstract
ABSTRACT This article is concerned with the parameter estimation in linear measurement error model when there is ill-conditioned data. To deal with the multicollinearity problem, a new two-parameter estimator is proposed. The asymptotic properties of the new estimator are considered using the mean squared error matrix. Finally, a Monte Carlo simulation is presented to show the performances of the estimators in terms of simulated mean squared error criteria. According to the results, the new estimator can be suggested as an alternative to the other existing estimators in the presence of ill-conditioned data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have