Abstract

Motivated by solid-solid phase transitions in elastic thin films, we perform a Γ-convergence analysis for a singularly perturbed energy related to second order phase transitions in a domain of vanishing thickness. Under a two-wells assumption, we derive a sharp interface model with an interfacial energy depending on the asymptotic ratio between the characteristic length scale of the phase transition and the thickness of the film. In each case, the interfacial energy is determined by an explicit optimal profile problem. This asymptotic problem entails a nontrivial dependance on the thickness direction when the phase transition is created at the same rate as the thin film, while it shows a separation of scales if the thin film is created at a faster rate than the phase transition. The last regime, when the phase transition is created at a faster rate than the thin film, is more involved. Depending on growth conditions of the potential and the compatibility of the two phases, we either obtain a sharp interface model with scale separation, or a trivial situation driven by rigidity effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call