Abstract

A two-dimensional electrostatic model for degraded short channel lightly doped drain (LDD)-nMOSFETs is presented. The model is based on a numerical solution of the Poisson equation using the five-point finite difference approximation. The model takes into account all device details including doping profiles and spatial and energy distribution of hot-carrier induced interface traps in the LDD region. Potential and charge distributions within the device in weak (subthreshold) and strong inversion regimes have been extensively studied. The validation of the model has been carried out through comparison between simulated I-V characteristics in the linear region and published experimental data. The results obtained have shown that the drain current is greatly affected by the energy distribution of interface traps, especially in the low gate voltage range (near-threshold and subthreshold).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.