Abstract
Peptide cyclization is a useful strategy for the stabilization of short flexible peptides into well-defined bioactive conformations, thereby enhancing their ability to interact with proteins and other important biomolecules. We present an optimized procedure for the stabilization of linear diazido peptides in an α-helical conformation upon reaction with dialkynyl linkers under Cu(I) catalysis. As this procedure generates side chain-cyclized peptides bearing a bis-triazole linkage, it is referred to as 'double-click' stapling. Double-click stapling can enhance the binding affinity, proteolytic stability and cellular activity of a peptide inhibitor. A distinguishing feature of double-click stapling is the efficiency with which peptides bearing different staple linkages can be synthesized, thus allowing for modular control over peptide bioactivity. This protocol describes the double-click reaction between a 1,3-dialkynylbenzene linker and peptides that contain azidoornithine. Subsequent peptide purification and confirmation steps are also described. The entire double-click stapling protocol can be completed in ∼48 h, including two overnight lyophilization steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.