Abstract
Tweedie models can be used to analyze nonnegative continuous data with a probability mass at zero. There have been wide applications in natural science, healthcare research, actuarial science, and other fields. The performance of existing Tweedie models can be limited on today’s complex data problems with challenging characteristics such as nonlinear effects, high-order interactions, high-dimensionality and sparsity. In this article, we propose a kernel Tweedie model, Ktweedie, and its sparse variant, SKtweedie, that can simultaneously address the above challenges. Specifically, nonlinear effects and high-order interactions can be flexibly represented through a wide range of kernel functions, which is fully learned from the data; In addition, while the Ktweedie can handle high-dimensional data, the SKtweedie with integrated variable selection can further improve the interpretability. We perform extensive simulation studies to justify the prediction and variable selection accuracy of our method, and demonstrate the applications in ratemaking and loss-reserving in general insurance. Overall, the Ktweedie and SKtweedie outperform existing Tweedie models when there exist nonlinear effects and high-order interactions, particularly when the dimensionality is high relative to the sample size. The model is implemented in an efficient and user-friendly R package ktweedie (https://cran.r-project.org/package=ktweedie).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.