Abstract
Sequential methods for synthetic realisation of random processes have a number of advantages compared with spectral methods. In this article, the determination of optimal autoregressive (AR) models for reproducing a predefined target autocovariance function of a random process is addressed. To this end, a novel formulation of the problem is developed. This formulation is linear and generalises the well-known Yule-Walker (Y-W) equations and a recent approach based on restricted AR models (Krenk-Møller approach, K-M). Two main features characterise the introduced formulation: (i) flexibility in the choice for the autocovariance equations employed in the model determination, and (ii) flexibility in the definition of the AR model scheme. Both features were exploited by a genetic algorithm to obtain optimal AR models for the particular case of synthetic generation of homogeneous stationary isotropic turbulence time series. The obtained models improved those obtained with the Y-W and K-M approaches for the same model parsimony in terms of the global fitting of the target autocovariance function. Implications for the reproduced spectra are also discussed. The formulation for the multivariate case is also presented, highlighting the causes behind some computational bottlenecks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.