Abstract
Alkaline phosphatase (ALP) is an essential hydrolase and widely distributed in living organisms. It plays important roles in various physiological and pathological processes. Herein, a turn-on near-infrared (NIR) fluorescent probe (DXMP) was developed for sensitive detection of ALP activity both in vitro and in vivo based on the intramolecular charge transfer (ICT) mechanism. Upon incubation with ALP, DXMP exhibited a strong fluorescence increment at 640 nm, which was attributed to the fact that ALP-catalyzed cleavage of the phosphate group in DXMP induced the transformation of DXMP into DXM-OH. The probe exhibited prominent features including outstanding selectivity, high sensitivity, and excellent biocompatibility. More importantly, it has been successfully used to detect and image endogenous ALP in living cells and zebrafish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.