Abstract

Nitrite ions are important markers threatening humans and environmental security. A highly selective method for rapid detection of nitrite needs to be developed. Herein, a novel and rapid fluorescence method for nitrite determination is established on the basis of diazotization-coupling reaction of methanobactin (Mb) extracted by Methylosinus trichosporium OB3b with nitrite on the fluorescence. In the presence of gold nanoparticles (AuNPs), the fluorescence of AuNPs was strongly quenched by the Mb because the sulfhydryl or amino structures on the surface of Mb could be bound to the surface of AuNPs by forming Au-S or Au-N bonds. Upon addition of nitrite, the Mb easily reacts with nitrite to form azo products in the acidic medium. Then, with the increase of nitrite concentration, the Mb-AuNPs fluorescence was gradually recovered, realizing the turn-on fluorescence sensing of nitrite. Under optimal conditions, the proposed method has a good linear relationship with nitrite concentration in the range of 0–8.0 μM and 8.0–50.0 μM, and the detection limit is 16.21 nM. In addition, satisfactory results were obtained for nitrite analysis using milk, ham sausage and leaf mustard as real samples, which demonstrated that the method as-developed would have great practical application prospects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call