Abstract

A microbial consortium capable of degrading turbine oil (TuO), which consisted mainly of recalcitrant cycloalkanes and isoalkanes, was obtained from a soil sample collected from oil fields using repeated enrichment. When this consortium, named Atsuta A, was cultured in minimal salts medium containing 0.5% (w/v) TuO, it degraded 90% of TuO at 30 °C and pH 7 over 5 days. Although nine bacterial strains were isolated from the Atsuta A consortium, TuO degradation by the individual isolates and by a mixture of them was negligible. The community structure of the consortium, which was investigated by PCR–denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes, changed significantly during the degradation of TuO. Four major bands (F, K, N and T) out of at least 23 DGGE bands significantly increased in intensity over time during incubation. The DGGE bands F, K and N corresponded to those of previously isolated species. However, DGGE band T did not correspond to any isolated strain. The 16S rRNA gene sequence collected from band T was 98% homologous to that of an unculturable strain belonging to the γ-Proteobacteria. The degradation of TuO in the consortium may occur by cooperation between the unculturable species corresponding to band T and other strains in the consortium, including species corresponding to bands F, K and N.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call