Abstract
Spiking neural network algorithms require fine-tuned neuromorphic hardware to increase their effectiveness. Such hardware, mainly digital, is typically built on mature silicon nodes. Future artificial intelligence applications will demand the execution of tasks with increasing complexity and over timescales spanning several decades. The multi-timescale requirements for certain tasks cannot be attained effectively enough through the existing silicon-based solutions. Indium-Gallium-Zinc-Oxide thin-film transistors can alleviate the timescale-related shortcomings of silicon platforms thanks to their bellow atto-ampere leakage currents. These small currents enable wide timescale ranges, far beyond what has been feasible through various emerging technologies. Here we have estimated and exploited these low leakage currents to create a multi-timescale neuron that integrates information spanning a range of 7 orders of magnitude and assessed its advantages in larger networks. The multi-timescale ability of this neuron can be utilized together with silicon to create hybrid spiking neural networks capable of effectively executing more complex tasks than their single-technology counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.