Abstract

The enzyme Dicer is best known for its role as an endoribonuclease in the small RNA pathway, playing a crucial role in recognizing viral double-stranded RNA (dsRNA) and inducing down-stream cascades to mediate anti-virus immunity. In the present study, a truncated Dicer-like gene was identified from oyster Crassostrea gigas, and its open reading frame (ORF) encoded a polypeptide (designed as CgDCL) of 530 amino acids. The CgDCL contained one N-terminal DEAD domain and a C-terminal helicase domain, but lack the conserved PAZ domain, ribonuclease domain (RIBOc) and dsRNA binding domain. The mRNA transcripts of CgDCL were detected in all the examined tissues with high expression levels in lip, gills and haemocytes, which were 62.06-fold, 48.91-fold and 47.13-fold (p < 0.05) of that in mantle, respectively. In the primarily cultured oyster haemocytes, the mRNA transcripts of CgDCL were significantly induced at 12 h after poly(I:C) stimulation, which were 4.04-fold (p < 0.05) of that in control group. The expression level of CgDCL mRNA in haemocytes was up-regulated significantly after dsRNA and recombinant interferon-like protein (rCgIFNLP) injection, which was 12.87-fold (p < 0.01) and 3.22-fold (p < 0.05) of that in control group, respectively. CgDCL proteins were mainly distributed in the cytoplasm of haemocytes. The recombinant CgDCL protein displayed binding activity to dsRNA and poly(I:C), but no obvious dsRNA cleavage activity. These results collectively suggest that truncated CgDCL from C. gigas was able to be activated by poly(I:C), dsRNA and CgIFNLP, and functioned as an intracellular recognition molecule to bind nucleic acid of virus, indicating a potential mutual cooperation between RNAi and IFN-like system in anti-virus immunity of oysters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call