Abstract

We present a novel aerial manipulator concept composed of a fully actuated hexarotor aerial vehicle and an n degree of freedom manipulator. Aiming at interaction tasks, we present a trajectory following control framework for the end-effector of the manipulator. The system is modeled in Euler-Lagrangian formalism and in Denavit-Hartenberg form. Benefiting from the redundancy of the system, we present several cost function strategies based on the projected gradient method to optimize the aerial manipulator behavior. The control framework is based on exact feedback linearization. In an advanced simulation section, we thoroughly present the robustness of the system and its limits in two typical configuration constituted by an 8 and a 10 degrees of freedom redundant aerial manipulator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call