Abstract

A band-pass filter is a wireless component that transmits frequencies within a certain range and attenuates frequencies outside that range. Band-pass filter (BPF) has been used as a core component for an Radio Frequency (RF) communication system. BPF generally designed based on transmission line resonators. Therefore, miniaturization of these components is important. In this study, a triangle-shaped band-pass filter with a meander-line resonator and complement split-ring resonator (CSRR) defected ground structure (DGS) and not defected ground structure have been propose in this study. Four different band-pass filter designs have been simulated. In addition to comparing the CSRR DGS effect in different designs, it has been tried to get better results with added perturbation. The materials and thicknesses used in the filters kept constant. BPF fabricated on a standard h of 1 mm thick Rogers RO3003 substrate with dielectric constant ɛr of 3. It aimed to obtain better results by making only geometric changes. Making this geometric changes reliable more than one band-with ranges has been intended. Band-pass filter has been designed for 5 GHz frequency in Wi-Fi which also has been provided considerable results for 3.2 GHz. The numerical results has been compared with the results found in this study. Compared to used sources, more efficient results has been achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call