Abstract

Semiconductor devices that rely on quantum tunnelling could be of use in logic, memory and radiofrequency applications. Tunnel devices that exhibit negative differential resistance typically follow an operating principle in which the tunnelling current contributes directly to the drive current. Here, we report a tunnelling field-effect transistor made from a black phosphorus/Al2O3/black phosphorus van der Waals heterostructure in which the tunnelling current is in the transverse direction with respect to the drive current. Through an electrostatic effect, this tunnelling current can induce a drastic change in the output current, leading to a tunable negative differential resistance with a peak-to-valley ratio of more than 100 at room temperature. Our device also exhibits abrupt switching, with a body factor (the relative change in gate voltage with respect to that of the surface potential) that is one-tenth of the Boltzmann limit for conventional transistors across a wide temperature range. A black phosphorus/Al2O3/black phosphorus heterostructure can be used to create a tunnel field-effect transistor in which the tunnelling current is in the transverse direction with respect to the drive current, leading to abrupt switching and a negative differential resistance with a peak-to-valley ratio of more than 100 at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.