Abstract

A major resistance quantitative trait locus, qRfg1, significantly enhances maize resistance to Gibberella stalk rot, a devastating disease caused by Fusarium graminearum. However, the underlying molecular mechanism remains unknown. We adopted a map-based cloning approach to identify the resistance gene at qRfg1 and examined the dynamic epigenetic changes during qRfg1-mediated maize resistance to the disease. A CCT domain-containing gene, ZmCCT, is the causal gene at the qRfg1 locus and a polymorphic CACTA-like transposable element (TE1) c. 2.4kb upstream of ZmCCT is the genetic determinant of allelic variation. The non-TE1 ZmCCT allele is in a poised state, with predictive bivalent chromatin enriched for both repressive (H3K27me3/H3K9me3) and active (H3K4me3) histone marks. Upon pathogen challenge, this non-TE1 ZmCCT allele was promptly induced by a rapid yet transient reduction in H3K27me3/H3K9me3 and a progressive decrease in H3K4me3, leading to disease resistance. However, TE1 insertion in ZmCCT caused selective depletion of H3K4me3 and enrichment of methylated GC to suppress the pathogen-induced ZmCCT expression, resulting in disease susceptibility. Moreover, ZmCCT-mediated resistance to Gibberella stalk rot is not affected by photoperiod sensitivity. This chromatin-based regulatory mechanism enables ZmCCT to be more precise and timely in defense against F.graminearum infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.