Abstract

Sugarcane, a major crop grown in the tropical and subtropical areas of the world, is produced mainly for sucrose, which is used as a sweetener or for the production of bioethanol. Among the numerous pests that significantly affect the yield of sugarcane, the sugarcane rhizome borer (Migdolus fryanus, a cerambycidae beetle) is known to cause severe damage to the crops in Brazil. The absence of molecular information about this insect reinforces the need for studies and an effective method to control this pest. In this study, RNA-Seq technology was employed to study different parts of M. fryanus larvae. The generated data will help in further investigations about the taxonomy, development, and adaptation of this insect. RNA was extracted from six different parts (head, fat body, integument, hindgut, midgut, and foregut) using Trizol methodology. Using Illumina paired-end sequencing technology and the Trinity platform, trimming and de novo assembly was performed, resulting in 44,567 contigs longer than 200 nt for a reunion of data from all transcriptomes, with a mean length of 1,095.27 nt. Transcripts were annotated using BLAST against different protein databanks (Uniprot/Swissprot, PFAM, KEEG, SignalP 4.1, Gene Ontology, and CAZY) and were compared for similarity using a Venn diagram. Differential expression patterns were studied for select genes through qPCR and FPKM comprising important protein families (digestive peptidases, glucosyl hydrolases, serine protease inhibitors and otopetrin), which allowed a better understanding of the insect’s digestion, immunity and gravity sensorial mechanisms.

Highlights

  • Insects are ancient, diverse, and adaptable organisms capable of surviving in a vast range of environments [1,2]; the coleopterans are the most diverse among the insects

  • Our assembly results suggest that length distribution pattern, mean length of contigs, and N50 values are similar to those of other insects obtained from previous Illumina-based transcriptome studies[9,17], leading us to conclude that our transcriptome sequencing data from M. fryanus larvae was effectively assembled

  • The insect’s innate immune system is based on recognition molecules and antimicrobial peptides. They are produced mainly in fat body, relative of the liver, and in the epithelium, such as digestive tracts and integument [47]. Quantitative Real-Time Polymerase Chain Reaction (qPCR) tests for GH16 showed a higher expression in digestive tracts, integument, head, and fat body (Fig 6I). These results show that this gene is one among the Mf_GNBPs, and the protein encoded by it acts as a recognition molecule from innate immune system

Read more

Summary

Introduction

Diverse, and adaptable organisms capable of surviving in a vast range of environments [1,2]; the coleopterans are the most diverse among the insects. Migdolus fryanus (Coleoptera: Cerambycidae) is a holometabolous insect that presents a long life cycle (3–4 years) in four stages: egg, larva, pupa, and adult. Under laboratory conditions the larvae hatch about 15 to 20 days after oviposition. Hatched larvae apparently feed on only organic matter, and in the later stages, they nourish up the root system of plants. PLOS ONE | DOI:10.1371/journal.pone.0173059 March 1, 2017

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.