Abstract

Abstract Vehicle trajectory prediction is one of the key technologies to realize autonomous driving, which provides an important guarantee for the safety of vehicles in the process of autonomous driving. In this paper, with this as the starting point, a graph convolutional neural network is introduced through a graph attention mechanism to obtain scene features by modeling the temporal Transformer model of surrounding information. Based on the temporal convolutional model to obtain scene features, new feature vectors are calculated by aggregating the weights for the features of nodes and neighboring nodes. Then the input feature dimensions are transformed into the weight matrix of the output feature dimensions, and the output feature vector corresponding to the attention coefficients is calculated by using weighted summation. Then the effect of multiple training of the model is evaluated by taking the mean value and defining its structural relationship. The experimental results show that the prediction error of the proposed method is significantly smaller than that of the comparison method in scenarios with speeds less than or equal to 5m/s and greater than 5m/s. The prediction error based on target detection is reduced by 58.95%, indicating that the proposed method is more consistent with the operation scenarios of autonomous driving.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.