Abstract

AbstractA visualization technique that allows simultaneous spatial analysis of complex flow behavior from thousands of Lagrangian trajectories is presented and tested using a high temporal and spatial resolution cloud model. The utility of the trajectory mapping technique is illustrated by showing that the source height of the air trajectories is a good proxy to the model-derived equivalent potential temperature. Moreover, the history of the forcing of vertical momentum is related to instantaneous vertical motion patterns shown to be elucidated in the trajectory mapping framework. The robustness of the trajectory mapping method was evaluated by integrating tendency terms and comparing Lagrangian-derived quantities to instantaneous values in the model. The original trajectory maps were also compared to those where the original fields have been filtered and/or the available data frequency are limited to the spatial and temporal scales typical of research radar datasets. The trajectory mapping method was applied to a supercell observed on 29 May 2004 to demonstrate that trajectory behavior for the observed case compares well to those from the higher-resolution numerical model output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call