Abstract
Tracking problem in spherical coordinates with range rate (Doppler) measurements, which would have errors correlated to the range measurement errors, is investigated in this paper. The converted Doppler measurements, constructed by the product of the Doppler measurements and range measurements, are used to replace the original Doppler measurements. A de-noising method based on an unbiased Kalman filter (KF) is proposed to reduce the converted Doppler measurement errors before updating the target states for the constant velocity (CV) model. The states from the de-noising filter are then combined with the Cartesian states from the converted measurement Kalman filter (CMKF) to produce final state estimates. The nonlinearity of the de-noising filter states are handled by expanding them around the Cartesian states from the CMKF in a Taylor series up to the second order term. In the mean time, the correlation between the two filters caused by the common range measurements is handled by a minimum mean squared error (MMSE) estimation-based method. These result in a new tracking filter, CMDN-EKF2. Monte Carlo simulations demonstrate that the proposed tracking filter can provide efficient and robust performance with a modest computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.