Abstract

Specific antigen-antibody interactions play a central role in the human immune system. The objective of this paper is to detect immune complexes using label-free detection techniques, that is, total internal reflection ellipsometry (TIRE) and atomic force microscopy (AFM)-based topography and recognition imaging. Interactions of purified rabbit immunoglobulin G (IgG) antibodies with bacterial endotoxins (Proteus mirabilis S1959 O3 lipopolysaccharides) were studied. Lipopolysaccharide was adsorbed on gold surface for TIRE. In the AFM imaging experiments, LPS was attachment to the PEG linker (AFM tip modification). The mica surface was covered by IgG. In TIRE, the optical parameters Ψ and Δ change when a complex is formed. It was found that even highly structured molecules, such as IgG antibodies (anti-O3 LPS rabbit serum), preserve their specific affinity to their antigens (LPS O3). LPS P. mirabilis O3 response of rabbit serum anti-O3 was also tested by topography and recognition imaging. Both TIRE and AFM techniques were recruited to check for possible detection of antigen-antibody recognition event. The presented data allow for determination of interactions between a variety of biomolecules. In future research, this technique has considerable potential for studying a wide range of antigen-antibody interactions and its use may be extended to other biomacromolecular systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.