Abstract
The design of dynamic torsional vibration dampers of piston internal combustion engines is generally based on the principle of a dynamic damper with one degree of freedom in which the coupling of the seismic mass of the damper to the basic dynamic system is realized by a two-parameter parallel rheological model. With known realizations of this principle, it is usually difficult to achieve the optimum value of the respective damper parameters determined from the computational models, which is particularly true for optimal damping values. A dynamic torsional damper, based on the series arrangement principle of the elastic and damping element, offers better design options to achieve the optimum parameters of both the elastic and damping elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.