Abstract

AbstractWe introduce a functor which associates to every measure-preserving system (X,ℬ,μ,T) a topological system $(C_2(\mu ),\tilde {T})$ defined on the space of twofold couplings of μ, called the topological lens of T. We show that often the topological lens ‘magnifies’ the basic measure dynamical properties of T in terms of the corresponding topological properties of $\tilde {T}$. Some of our main results are as follows: (i) T is weakly mixing if and only if $\tilde {T}$ is topologically transitive (if and only if it is topologically weakly mixing); (ii) T has zero entropy if and only if $\tilde {T}$ has zero topological entropy, and T has positive entropy if and only if $\tilde {T}$ has infinite topological entropy; (iii) for T a K-system, the topological lens is a P-system (i.e. it is topologically transitive and the set of periodic points is dense; such systems are also called chaotic in the sense of Devaney).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.