Abstract

A tone analyzer is demonstrated using a distributed resonator architecture on a tensioned piezoelectric polyvinyledene diuoride (PVDF) sheet. This sheet is used as both the resonator and detection element. Two architectures are demonstrated; one uses distributed, directly addressed elements as a proof of concept, and the other integrates organic thin film transistor-based transimpedance amplifiers directly with the PVDF to convert the piezoelectric charge signal into a current signal. The PVDF sheet material is instrumented along its length, and the amplitude response at 15 sites is recorded and analyzed as a function of the frequency of excitation. The determination of the dominant component of an incoming tone is demonstrated using linear system decomposition of the time-averaged response of the sheet and is performed without any time domain analysis. This design allows for the determination of the spectral composition of a sound using the mechanical signal processing provided by the amplitude response and eliminates the need for time-domain downstream signal processing of the incoming signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call