Abstract

Surface polarization in a poly(4-vinyl phenol) (PVP) dielectric induced by water molecules has been qualitatively investigated in pentacene thin-film transistors. The magnitudes of drain currents from devices with PVP dielectrics subject to specific surface treatments increased with humidity, whereas the opposite responses were observed from device with SiO2 dielectrics. The increase in drain current is attributed to the accumulation of extra charge carriers induced by the surface polarization in addition to that by the vertical electric field. Such polarization effects should be carefully considered in characterizing organic and polymer thin-film transistors, particularly those with polymeric gate insulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.