Abstract

In this paper, the normalized least mean square (NLMS) algorithm, a time-varying signal processing method, is employed in a Coriolis mass flowmeter (CFM) to improve its weak anti-jamming capability. Initially, the fundamental principles of the NLMS algorithm adopted in the adaptive filter are analysed. Then, the NLMS algorithm is applied to analyse the signal processing of the CFM at different flow rates in experiments. By comparing several performance indicators and spectrum diagrams from being filtered by the NLMS algorithm and the least mean square (LMS) algorithm, the results indicate that the NLMS algorithm can lead to a better anti-jamming capability and reduce the influence of noise efficiently for the CFM. In addition, the NLMS method has a faster convergence speed and fewer stable errors than the LMS method. Therefore, the NLMS can improve the quality of the output signal of the CFM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.