Abstract

This paper describes a set of block processing algorithms which contains as extremal cases the normalized least mean squares (NLMS) and the block recursive least squares (BRLS) algorithms. All these algorithms use small block lengths, thus allowing easy implementation and small input-output delay. It is shown that these algorithms require a lower number of arithmetic operations than the classical least mean squares (LMS) algorithm, while converging much faster. A precise evaluation of the arithmetic complexity is provided, and the adaptive behavior of the algorithm is analyzed. Simulations illustrate that the tracking characteristics of the new algorithm are also improved compared to those of the NLMS algorithm. The conclusions of the theoretical analysis are checked by simulations, illustrating that, even in the case where noise is added to the reference signal, the proposed algorithm allows altogether a faster convergence and a lower residual error than the NLMS algorithm. Finally, a sample-by-sample version of this algorithm is outlined, which is the link between the NLMS and recursive least squares (RLS) algorithms. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.