Abstract

Abstract In this paper, we propose a time-variant extreme-value event evolution method (TEEM). The time-evolution process of extreme-value event is firstly proposed in this paper. And by solving it, we can obtain the time-variant reliability of arbitrary time interval and arbitrary failure threshold. In this method, the random process in limit-state function is firstly expanded by an improved orthogonal series expansion method (iOSE). Second, we introduce the idea of extreme-value event to describe the time-variant reliability problem. And by discretizing the time domain, we can obtain a series of extreme-value events. The moments of extreme-value event in every discrete time interval will be solved by the integration of Broyden–Fletcher–Goldfarb–Shanno (BFGS) method and univariate dimension reduction method (UDRM). Third, a time-dependent polynomial chaos expansion method (t-PCE) is proposed to simulate the extreme-value event's time-evolution process, and it will be simulated as a function in terms of a standard normal variable and time. Finally, Monte Carlo simulation (MCS) is adopted to sample the standard normal variable to obtain the time-variant reliability of arbitrary failure threshold and time interval. Three numerical examples are investigated to demonstrate the effectiveness of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.