Abstract

Snow depth can be mapped from airborne platforms and measured in situ rapidly, but manual snow density and snow water equivalent (SWE) measurements are time consuming to obtain using traditional survey methods. As a result, the limited number of point observations are likely insufficient to capture the true spatial complexity of snow density and SWE in many settings, highlighting the value of distributed observations. Here, we combine measured two-way travel time from repeat ground-penetrating radar (GPR) surveys along a ∼150 m transect with snow depth estimates from UAV-based Structure from Motion Multi-View Stereo (SfM-MVS) surveys to estimate snow density and SWE. These estimates were successfully calculated on eleven dates between January and May during the NASA SnowEx21 campaign at Cameron Pass, CO. GPR measurements were made with a surface-coupled Sensors and Software PulseEkko Pro 1 GHz system, while UAV flights were completed using a DJI Mavic 2 Pro platform and consisted of two orthogonal flights at ∼60 m elevation above ground level. SfM-MVS derived dense point clouds (DPCs) were georeferenced using eight ground control points and evaluated using three checkpoints, which were distributed across the ∼3.5 ha study plot containing the GPR transect. The DPCs were classified to identify the snow surface and then rasterized to produce snow-on digital surface models (DSMs) at 1 m resolution. Snow depths on each survey date were calculated by differencing these snow-on DSMs from a nearly snow-off DSM collected near the end of the melt season. SfM-derived snow depths were evaluated with independent snow depth measurements from manual probing (mean r2 = 0.67, NMAD = 0.11 m and RMSE = 0.12 m). The GPR-SfM derived snow densities were compared to snow density measurements made in snowpits (r2 = 0.42, NMAD = 39 kg m−3 and RMSE = 68 kg m−3). The integration of SfM and GPR observations provides an accurate, efficient, and a relatively non-destructive approach for measuring snow density and SWE at intermediate spatial scales and over seasonal timescales. Ongoing developments in snow depth retrieval technologies could be leveraged in the future to extend the spatial extent of this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.