Abstract
A time domain boundary element method (BEM) is presented to model the quasi-static linear viscoelastic behavior of asphalt pavements. In the viscoelastic analysis, the fundamental solution is derived in terms of elemental displacement discontinuities (DDs) and a boundary integral equation is formulated in the time domain. The unknown DDs are assumed to vary quadratically in the spatial domain and to vary linearly in the time domain. The equation is then solved incrementally through the whole time history using an explicit time-marching approach. All the spatial and temporal integrations can be performed analytically, which guarantees the accuracy of the method and the stability of the numerical procedure. Several viscoelastic models such as Boltzmann, Burgers, and power-law models are considered to characterize the time-dependent behavior of linear viscoelastic materials. The numerical method is applied to study the load-induced stress redistribution and its effects on the cracking performance of asphalt pavements. Some benchmark problems are solved to verify the accuracy and efficiency of the approach. Numerical experiments are also carried out to demonstrate application of the method in pavement engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.