Abstract
In this paper, a Nyquist ADC with a time-based pipelined TDC is proposed. In the proposed ADC, the first pipeline stage incorporates both residue amplification and a V-T conversion with high accuracy, efficiently realized by a low gain amplifier with only 24 dB dc gain. Furthermore, adding to power efficiency, a hybrid time-domain pipeline stage based on simple charge pump and capacitor DAC in its backend stages is also proposed. Using the right combination of voltage and time domain information, the proposed ADC architecture benefits from improved resolution and power efficiency, with MSBs resolved in voltage domain and LSBs in time domain. The measured results of the prototype ADC implemented in a 0.13 μm CMOS demonstrate peak SNDR of 69.3 dB at 6.38 mW power and 70 MHz sampling frequency. The FOM based on peak SNDR is 38.2 fJ/conversion-step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.