Abstract
Two-dimensional materials are trending nowadays because of their atomic thickness, layer-dependent properties, and their fascinating application in the semiconducting industry. In this work, we have synthesized MoSe2 and WSe2 nanosheets (NSs) via a liquid-phase exfoliation method and investigated these NSs as channel materials in field-effect transistors (FET). The x-ray diffraction (XRD) pattern revealed that the synthesized NSs have a 2H phase with 0.65 nm d-spacing which belongs to the (002) Miller plane. Transmission electron microscopy (TEM) studies revealed that MoSe2 and WSe2 have a nanosheet-like structure, and the average lateral dimensions of these NSs are ~ 25 nm and ~ 63 nm, respectively. From Raman spectra, we found that the intensity of the A1g vibrational mode decreases with the reduction in the number of layers. UV-visible spectroscopy revealed that the bandgap values of MoSe2 and WSe2 NSs are 1.55 eV and 1.50 eV, respectively, calculated using the Tauc equation. The output and transfer characteristics of the FET devices reveals that the fabricated FETs have good ohmic contact with the channel material and an ON/OFF current ratio of about 102 for both devices. This approach for the fabrication of FET devices can be achieved even without sophisticated fabrication facilities, and they can be applied as gas sensors and phototransistors, among other applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.