Abstract

Human skin is a complex multi-layer material. Many existing numerical skin models accurately simulate several of its complex mechanical characteristics. However, few models simulate wrinkling – a phenomenon common to all human skin. In this study, a multi-layer model of skin was developed to simulate wrinkling. The model consisted of the stratum corneum, dermis and underlying hypodermis. The results of the simulations were compared with results of in vivo wrinkling experiments performed on the volar forearm. The proposed three-layer skin model simulates wrinkling more realistically than models of fewer layers. The size of the wrinkles predicted by the model fell within the range of the wrinkle sizes measured in the experiments. The maximum range and average roughness differed by 34 and 43% from the corresponding mean experimental results, respectively. Applications of the model include simulating skin aging, designing more realistic artificial skin and the development of surgical simulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.