Abstract

In automotive testing systems, effective and efficient control strategies are required to control the induction motor drives so that fast torque response and low torque ripple can be obtained. The fast torque response can be obtained by using predictive current control (PCC) due to its high bandwidth over a wide speed range; and the torque ripple can be reduced by using open-end winding induction motor (OEWIM). However, the conventional PCC with first order cost function has the problem of excessive computation burden and insufficient suppression on zero-sequence current. In this paper, a three-dimensional predictive current trajectory control (3DPCTC) method is proposed and implemented. Compared with conventional predictive control methods, the proposed method significantly reduces calculation burden, and provides stronger zero-sequence current suppression and lower current distortion as well as more stable transient response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.