Abstract

ABSTRACT Many industrial powders have been documented to have time-dependent compression response. However, in the literature very few time-dependent formulations are reported for three-dimensional analysis of powder compaction. In the paper, a time-dependent constitutive model, based on the theory proposed by Adachi and Oka, was used in a three-dimensional finite element formulation suitable for PC or desktop environments. The finite element model (FEM) predicts both the stress and density distributions in the powder mass during compression, i.e., from no load to the maximum compression load. A user-friendly interactive GUI (graphical user interface) was developed for the 3-D FEM, making it easy to use. To validate the FEM, microcrystalline cellulose was compressed to form cylindrical pellets using a press. The pellet was used to obtain spatial density distribution using the sectioning method. Then, the measured density distribution was compared with the Adachi and Oka model-based FEM calculated values. The density distributions were predicted within the 95% confidence interval of measured values. In addition, the overall error between the measured and predicted density values throughout the pressed pellet was less than 10%

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.