Abstract
This paper proposes an inductive power transfer (IPT) system with three-bridge switching compensation topology. With the proposed IPT topology, the equivalent circuit and the resonant condition are analyzed to achieve the load-independent constant current (CC) and load-independent constant voltage (CV) outputs. On this basis, multiple power levels can be achieved under CC/CV conditions by bridge arm switching, which makes it possible to complete charging tasks for multiple power level electric vehicles (EV) without switching the IPT system. A circuit simulation was built to verify the different power level switching effects of the structure. A 3.3 kW IPT system was designed to verify the proposed structure. At the rated output power, the experimental efficiency was up to 92.04% and 91.21% in CC and CV output modes, respectively.
Highlights
TThhee eexxiisstteennccee ooff aann aaiirr ggaapp bbeettwweeeenn tthhee pprriimmaarryy aanndd sseeccoonnddaarryy ccooiillss ooff tthhee IIPPTT ssyysstteemm wwiillll lleeaadd ttoo llaarrggee lleeaakkaaggee iinndduuccttaannccee..IInnoorrddeerrttooiimmpprroovveetthheessyysstteemmeefffificciieennccyyaannddppoowweerrttrraannssffeerrccaappaabbiliiltiyty, tthhee ccoommppeennssaattiioonn nneettwwoorrkk wwiillll bbee uusseedd ttoo rreessoonnaattee wwiitthh tthhee lleeaakkaaggee iinndduuccttaannccee [[44]]
CV Mode 22..33..CCTVVhMeMeooqddeueivalent circuit of CV mode in IPT system is shown in Figures 6 and 7
Combining the theoretical analysis of the above-two transmission modes, it could be known that the three-bridge inverter structure could realize the conversion from constant current (CC) mode to CV mode by switching the working bridge arm under the fixed-frequency
Summary
AAss sshhoowwnn iinn FFiigguurree 33,, tthhee pprrooppoosseedd IIPPTT ssyysstteemm iinncclluuddeess aa tthhrreeee--pphhaassee iinnvveerrtteerr,, ttwwoo SSSS ccoommppAeesnnsssaahttioioownnnttooippnoollFooigggiiueesrseww3iit,thhthaaesshhpaarrroeepddossseeeccdoonnIddPaTarryysyccosotmmemppeenninssacalttuiioodnnesccaaappaatcchiirttoeoerr,,-paahttahhsrreeeei--nwwviiennrddteiinnr,ggtllwooooosseeSllySy ccoomuuppplleedndsttarrtaainonsnsffotoorrmpmoeelrorwgwiietihtshwtwtiwtohoparpisrmhimaarrayerdycoscielosciolasnndadnaordynoecnsoeemcsopenecdnoasnradytaiocronyilc,aoapinla,dcaiantnodru,ananctohunrnterceoo-lnwletrdinordlleiecndtgifirleeorcotwisfeiiletyhr cwaociutahpplaaecdciatotprraocniustoftoprruomtufietprltuewrt.iftQihlt1et–wrQ. oQ6 1pa–nrQidm Danr1y–dDcDo41i–rlesDpa4rnreedspenoretnsseeixnsetscswoixintcdshwairinytgchcpoinoilgw, paenrodwdeeavrnicdueesnvocicofentshtroeofpltlrheidempraerricymtisfaiidreyer wsinidivteheriantevcraeaprtnaedcritafoonrudorfuodtupioruddteifsoildtoeefrs.thoQfe1t–shQeec6osaenncddoanDrdy1a–srDiyd4seriedrpeercreteisficetenirft,iesrriex,srspewescpittecivchteinlvyge.lpyC.opCw1pea1rnadndedCvCipc2pe2saaroreef tthhee pprriimmaarryy sccioodmmeppineevnnessarattteiioornnanccadappfaaoccuiitrtoodrrsiso,,dwwehhsiiloleefCtChsseiissstethhceoenssedeccaoornynddsaiadrryeycrcoeocmmtipfpieenrns,saratetisioopnnecccataipvpaeaclcyiti.otoCr.rp.L1Lapp1n1daannCddp2LLappr22erreethpperreepssreeinnmtt atthhryee csseoellmff--piinneddnuuscacttaaionnncceecoaopff tathhceeitottwwrsoo, wttrraahnnilssemmCiisttttiiisnntgghcceoosiiellsscoonndttahhreeyppcrroiimmmaaprreyynsssiiaddteeio,, ananncddapLLasscrreietpoprrre.essLeepnn ttassnttdhheeLspse2elrlfef--piinnrdedsuueccnttatannthccee sooefflftt-hhienedrreeuccceetaiivvniicnneggoccfoothiille. UloDaCda.nd UL are system input and output DC voltages, respectively. CTTChhMee eeoqqdueuiivvaalleenntt cciirrccuuiitt ooff FFiigguurree 33 ffoorr aacchhiieevviinngg CCCC oouuttppuutt mmooddee iiss sshhoowwnniinnFFiigguurreess aanndd 55. IIPPTT ssyysstteemm ssttrruuccttuurree ddiiaaggrraamm iinn ccoonnssttaanntt ccuurrrreenntt ((CCCC)) mmooddee. IPT system structure diagram in constant current (CC) mode. SSoommee ooff tthhee ppaarraammeetteerrss aarree sshhoowwnn iinn tthhee ffoolllloowwiinngg ffoorrmmuullaa,, ssuucchh aass ttuurrnnss rraattiioo,, nncccc,,aannddccoouupplliinngg ccooeefffificciieenntt,, kkcccc,, The equivalent variables of ncc = ncc Figure 5 are. MMoorreeoovveerr,, tthhee ssyysstteemm oouuttppuutt ppoowweerr ooff tthhee CCCC mmooddee iiss aavvaaiillaabbllee. FFrroomm EEqquuaattiioonn ((88)),, iitt ccaann bbee sseeeenn tthhaatt tthhee oouuttppuutt ccuurrrreenntt wwaass ccoonnssttaanntt aanndd llooaadd iinnddeeppeennddeenntt. CV Mode 22..33..CCTVVhMeMeooqddeueivalent circuit of CV mode in IPT system is shown in Figures 6 and 7.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.