Abstract
Wireless power transfer (WPT) technology has been a research and industrial hotspot with applications in many areas, such as wireless electric vehicle charging system that requires high power, high efficiency, and high power factor (PF). Usually, the power is drawn from a 50/60 Hz single-phase or three-phase ac power source. For a high power application, a three-phase ac source is commonly used. In this paper, a three-phase single-stage WPT resonant converter with PF correction (PFC) and bus voltage control is proposed to improve efficiency and power quality of three-phase input and reduce production cost and complexity for a high power WPT system. A T-type topology is applied as the common part to perform both the PFC and dc–dc WPT functionalities simultaneously. The proposed converter is much more advantageous than a conventional three-phase two-stage WPT converter with individual PF corrector. In addition, three-phase single-stage topologies have better power quality than single-phase single-stage topologies because zero-sequence components can be naturally eliminated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Emerging and Selected Topics in Power Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.