Abstract
Abstract A partially parabolic procedure is developed to analyze three-dimensional viscous flows through curved ducts of arbitrary cross-section. The procedure, eventually aimed at centrifugal impeller analysis, incorporates a finite-volume method using a strong conservation form of the parabolized Navier-Stokes equations written in arbitrary curvilinear coordinates. Cartesian velocity components and pressure are used as dependent variables. A solution is achieved through pressure corrections which influence velocity semi-implicity. The basic physical elements associated with centrifugal impellers are considered. Laminar flow through 90° bent square duct, turbulent flow in low-aspect-ratio diffusers and subsonic compressible flow through an accelerating rectangular elbow are calculated. Turbulence is accounted for using the k − ϵ turbulence model. Good correlation between the predictions and experimental data was achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.