Abstract
A three-dimensional numerical method based on the superposition principle for the solution of the heat diffusion equation is derived for Cartesian coordinates and tested for three different boundary conditions: a constant heat flux density, a convective-type surface heat flux, and a sudden cooling of the surface to a constant temperature, In addition, this three-dimensional numerical method is compared with the popular three-dimensional Brian's alternating direction implicit (ADI) method. The method based on the superposition principle has the same degree of accuracy in most cases as the method normally used for these types of calculations. In addition, its algorithm is considerably simpler to formulate and easier to program, and it requires about half the computing time needed to solve the problem when using Brian's ADI method. On the other hand, Brian's ADI method is unconditionally stable, but the method based on the superposition principle is not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.