Abstract

The determination of temperature fields is usually required for the calculation of structural deformation and stress induced by temperature variation. To guarantee the serviceability and safety of structures by improving calculation accuracy, this study presents a three-dimensional structural temperature field simulation framework that accounts for shadowing effects and changes in solar radiation intensity throughout the day. Field experiments were conducted to update the established model and to verify the accuracy of the numerical algorithm. The proposed method was finally applied in a case study to determine the temperature fields of both a rail and a U-shaped concrete girder. The results show that the temperature field of the concrete girder had obvious nonlinear distribution characteristics. Three-dimensional structural temperature field analysis is especially required for complicated structures with varied sections along the longitudinal axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.