Abstract

Non-intrusive measurement of fluid temperature using laser interferometry is reported. As a case study, results obtained in Rayleigh-Benard convection experiment are presented. Image processing operations required for the evaluation interferograms and extraction of quantitative data from the optical Images are discussed. Limited-view tomographic algorithms applicable to interferometry are discussed and compared in terms of reconstructed three-dimensional temperature fields. This study concludes that laser interferometry coupled with tomography promises a versatile tool for three-dimensional temperature and flow field measurements in fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call