Abstract
This study presents a method to optimize the mass transport and electron transfer of metal oxides in electrochemical processes by using a three-dimensional (3D) porous graphene macroassembly (GM) as a framework. A simple method, pressurized infiltration, is reported to realize uniform dispersion of metal oxide nanoparticles on the graphene skeleton in the GM. The obtained GM–NiO hybrid shows significantly improved performance in electrochemical catalytic processes and energy storage applications. When used as the active material in nonenzymic sensors, it shows a low detection limit towards glucose while maintaining high sensitivity. It also shows a high capacitance of about 727 F g−1 and maintains high rate performance when used as the electrode material for supercapacitors. More importantly, this method may be sufficiently versatile for the hybridization of different kinds of noncarbon materials with GM to promote their practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.