Abstract

High-performance plasmonic substrates have recently attracted much research attention. Herein, a three-dimensional gold nanoparticles (AuNPs) spherical liquid array (SLA) with high “hot spots” and tunable nanometer gap by optimizing the proportion of AuNPs colloids over chloroform was synthesized based on a water–oil interfacial self-assembly strategy. The substrate demonstrated excellent surface-enhanced Raman scattering (SERS) performance using tetrathiafulvalene and rhodamine 6G (R6G) as probe molecules. With a simple extraction and soaking pretreatment process, the SLA exhibited high sensitivity for analysing triazophos on apple peels, with a limit of detection (LOD) of 0.005 µg/mL and recovery ranging from 96 to 110 %. Particularly, the chloroform produced an inherent characteristic peak at 665 cm−1, which was used as the internal standard to correct SERS signal fluctuation, leading to an improvement of the corresponding coefficient R2 from 0.97 to 0.99, thus improving the reproducibility. Therefore the SLA substrate possesses the potential for quantitative analysis of food contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.