Abstract

A self‐assembled three phase epitaxial nanocomposite film is grown consisting of ≈3 nm diameter fcc metallic Cu nanorods within square prismatic SrO rocksalt nanopillars in a Sr(Ti,Cu)O3‐δ perovskite matrix. Each phase has an epitaxial relation to the others. The core–shell‐matrix structures are grown on SrTiO3 substrates and can also be integrated onto Si using a thin SrTiO3 buffer. The structure is made by pulsed laser deposition in vacuum from a SrTi0.75Cu0.25O3 target, and formed as a result of the limited solubility of Cu in the perovskite matrix. Wet etching removes the 3 nm diameter Cu nanowires leaving porous SrO pillars. The three‐phase nanocomposite film is used as a substrate for growing a second epitaxial nanocomposite consisting of CoFe2O4 spinel pillars in a BiFeO3 perovskite matrix, producing dramatic effects on the structure and magnetic properties of the CoFe2O4. This three‐phase vertical nanocomposite provides a complement to the well‐known two‐phase nanocomposites, and may offer a combination of properties of three different materials as well as additional avenues for strain‐mediated coupling within a single film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call