Abstract

A three-body force shell model (TSM) for the calculation of Schottky defect formation energies in solids with cesium chloride structure has been developed by incorporating the effects of long-range three-body interactions (TBI) in the shell model. These TBI in the defect lattice arise from the deformation of electron shells when the nearest neighbour ions get relaxed from their equilibrium position. This model has been used to calculate the cation and anion extraction and Schottky defect formation energies of CsCl, CsBr, CsI, TlCl, TlBr and NH4Cl crystals. The calculated values of these defect properties agree reasonably well with their measured values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.