Abstract
Determining water surface profiles of steady open channel flows in a one-dimensional bounded domain is one of the well-trodden topics in conventional hydraulic engineering. However, it involves Dirichlet problems of scalar first-order quasilinear ordinary differential equations, which are of mathematical interest. We show that the notion of viscosity solution is useful in thoroughly describing the characteristics of possibly non-smooth and discontinuous solutions to such problems, achieving the conservation of momentum and the entropy condition. Those viscosity solutions are the generalized solutions in the space of bounded measurable functions. Generalized solutions to some Dirichlet problems are not always unique, and a necessary condition for the non-uniqueness is derived. A concrete example illustrates the non-uniqueness of discontinuous viscosity solutions in a channel of a particular cross-sectional shape.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.