Abstract
This paper is devoted to the stochastic optimal control problem of ordinary differential equations allowing for both path-dependence and measurable randomness. As opposed to the deterministic path-dependent cases, the value function turns out to be a random field on the path space and it is characterized by a stochastic path-dependent Hamilton–Jacobi (SPHJ) equation. A notion of viscosity solution is proposed and the value function is proved to be the unique viscosity solution to the associated SPHJ equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.