Abstract

This paper proposes a resistive humidity sensor that uses a carbon-black and polyvinyl alcohol composites thin film, fabricated with a unique film coating method for thinner thickness and higher sensitivity. Improving the sensitivity of sensing films is still of great importance in the research field of gas sensors. The humidity sensor devices with thin composite film and microelectrode structure are fabricated on the glass substrate for a low cost and a simple fabrication process. The sensor gives a rapid response for humidity levels from 10.9% relative humidity (RH) to 73.7% RH, and the response time is about 5.77 s. Experimental results reveal that the sensor has good sensitivity, reproducibility, fast reaction time, and wide range. In addition to humidity, the sensor also responds well to gases such as ethanol. The proposed gas sensor in this paper can be applied to the other combinations of polymers and nanoparticles to form new gas sensors, which have the potential to be used as a gas sensor array for detecting the composition of complex gases such as volatile organic components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call