Abstract

We developed a very sensitive high-frequency carrier-type thin film sensor with a sub-pT resolution using a transmission line. The sensor element consists of Cu conductor with a meander pattern (20 mm in length, 0.8 mm in width, and 18 μm in thickness), a ground plane, and amorphous CoNbZr film (4 μm in thickness). The amplitude modulation technique was employed to enhance the magnetic field resolution for measurement of the high-frequency field (499 kHz), a resolution of 7.10×10 −13 T/Hz 1/2 being achieved, when we applied an AC magnetic field at 499 kHz. The phase detection technique was applied for measurement of the low frequency field (around 1 Hz). A small phase change was detected using a dual mixer time difference method. A high phase change of 130°/Oe was observed. A magnetic field resolution of 1.35×10 −12 T/Hz 1/2 was obtained when a small AC field at 1 Hz was applied. We applied the sensor for magnetocardiogram (MCG) measurement using the phase detection technique. We succeeded in measuring the MCG signal including typical QRS and T waves, and compared the MCG with a simultaneously obtained conventional electrocardiogram (ECG) signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call