Abstract

AbstractAn aromatic lactam acceptor unit, thieno[3,2‐c]isoquinolin‐5(4H)‐one (TIQ), is developed. Compared with its analogues, dithieno[3,2‐b:2′,3′‐d]pyridin‐5(4H)‐one (DTP) and phenanthridin‐6(5H)‐one (PN), TIQ shows its advantage in constructing donor–acceptor (D–A) copolymers for efficient solar cells. TIQ‐based D–A copolymer PTIQ4TFBT delivers a power conversion efficiency (PCE) of 10.16% in polymer:fullerene solar cells, while those based on DTP and PN copolymers, PDTP4TFBT and PPN4TFBT, afford PCEs around 8.5%. The higher performance of PTIQ4TFBT:PC71BM solar cells originates from enhanced short‐circuit current density (Jsc) and fill factor (FF), because of favorable morphology, less bimolecular recombination, and balanced charge transport in the active layer. Moreover, the performance for PTIQ4TFBT:PC71BM solar cells is less sensitive to active layer thickness than PDTP4TFBT:PC71BM and PPN4TFBT:PC71BM solar cells. Over 8% PCEs can be obtained from PTIQ4TFBT:PC71BM solar cells when the active layer thickness is over 500 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.