Abstract

Ultraviolet radiation is one of the most dangerous sources of damage to skin and causes sunburn, erythema, photoaging, and photocarcinogenesis. Some passive drug delivery systems (DDSs) have been developed to treat skin damage. Nevertheless, there have been few studies on the application of intelligent DDSs to enhance the treatment of sunburn. In this paper, thermosensitive microgels were prepared by porous CaCO3 infiltrated by a thermoresponsive polymer, which was synthesized by grafting carboxyl-terminated poly (N-vinylcaprolactam) (PVCL-COOH) onto hydrolyzed chitosan. By means of the pad-dry-cure method, microgels were attached to cotton fabrics to develop a medical textile for drug delivery. The results indicated that the microgels were deposited both on the fiber surface and in the space between the fibers. The loaded drug presented a thermoresponsive release profile, and the release mechanism also varied with temperature. After being treated with the medical textile, human keratinocyte HaCaT cells could be protected by inhibiting UVB-induced lactate dehydrogenase leakage and increasing the levels of superoxide dismutase and glutathione peroxidase (GSH-Px). Our study suggested that this thermosensitive microgel-finished cotton fabric can be used as an effective device for the treatment of UVB-induced damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call